맥시마(Maxima)로 미분방정식을 풀 수 있다. 이때 사용되는 대표적인 함수로서 ode2() 함수와 desolve() 함수가 있는데 이 중에서 ode2()함수를 이용하여 아래의 2계 선형 상미방을 풀어보자.

이것을 손으로 풀면 A4용지 한 페이지가 꽉 찰 정도로 풀이 과정이 꽤 복잡한 문제이다. ode2()함수의 첫번째 인자는 미분방정식을 입력해야 된다. wxMaxima에서는

y'(x) 은 'diff(y,x)
y''(x) 는 'diff(y,x,2)

로 입력한다. 그리고 ode2()의 두 번째 인자는 함수(이 경우는 y), 세 번째 인자는 독립변수(이 예제에서는 x이다.)를 넣어주면 된다.


위에서 %k1, %k2는 적분상수를 표시한다. 초기 조건(initial condition)을 입력하여 적분상수를 구하려면 다음과 같이 ic2()함수를 이용하면 된다.


이것으로부터 미방의 해는 y=sin(x) + 3x/25 - 8/25 + 3.1e-0.5x 임을 알 수 있다.


 이 해의 그래프를 그려보고 싶다면 wxplot2d()함수를 이용하면 된다.

위 에서 wxplot2d()의 첫 번째 인자로 도시하려는 함수를 입력해야 하는데 rhs(%o2)라고 되어 있다. 이것은 결과가 저장된 변수 %o2 의 우변(right-hand side)을 추출하는 함수이다. 그리고 두 번째 인자는 [x,0,20] 인데 x축의 범위를 설정하는 것이다.



Posted by 살레시오
,

 만약 x, y가 심볼로 등록이 되어 있다면 함수 y(x)의 x에 대한 미분은 sympy에서 다음과 같이 표현할 수 있다.


  • y(x) : 독립 변수 x에 대한 함수 y

  • y(x).diff() 혹은 y(x).diff(x,1) : 1차 미분

  • y(x).diff(x,2) : 2차 미분

  • y(x).diff(x,3) : 3차 미분


이것을 이용하면 상미분식을 표현할 수 있다. 예를 들면 다음과 같다.


[표 1] 미분식의 심파이 표현식 예

수식

심파이 표현식

y(x).diff() - cos(x)

y(x).diff(x,2) + 9*y(x) - exp(-2*x)

y(x).diff()-1-y(x)**2


함수를 표현할 때 y(x)와 같이 독립변수도 반드시 표기해야 함을 유의하자.


 dsolve()함수는 미분방정식을 풀어주는 sympy의 기본 함수이다. 첫 번째 인자로 미분식을, 두 번째 인자로 구할 함수를 적어주면 된다. 예를 들어서 다음과 같은 1차 상미방을 푼다고 가정하자.



이 미분방정식의 우변을 0으로 만들면 다음과 같다.



이제 dsolve 함수의 첫 번째 인자로 위 식의 좌변을 넣어주고 두 번째 인자로 y(x)를 인가하면 된다.



여기서 C1은 상수이다.  다른 미분 방정식을 풀어보자.



이 방정식도 우변을 먼저 0으로 만들어야 한다.



이제 이 식의 좌변을 dsolve()함수의 첫 번째 인자로 넣어준다.



2차 미분방정식도 입력할 수 있다. 예를 들어



을 풀려면 다음과 같이 하면 된다.



만약 함수의 미분표현식을 매번 입력하기 번거롭다면 다음과 같이 새로 정의하여 사용하면 된다.



이렇게 정의해 놓으면 이후부터는 y(x).diff() 대신 dy를, y(x).diff(x,2) 와 같이 긴 표현식 대신 ddy를 사용하면된다.



여기서 C1과 C2는 상수이다. 이것이 dsolve()함수를 이용한 미분방정식을 푸는 가장 기본적인 방법이다.



Posted by 살레시오
,