The differential equation can be solved using an integrating factor. An integrating factor for this differential equation is e^(int(2)dx)=e^(2x).

Multiplying both sides of the differential equation by e^(2x) gives:
e^(2x)f'(x) - 2e^(2x)f(x) = e^(3x)

Now, we can use the product rule for derivatives, which states that:
(e^(2x)f(x))' = e^(2x)f'(x) + 2e^(2x)f(x)

Therefore, we can write:
(e^(2x)f(x))' = e^(3x)

Integrating both sides with respect to x gives:
e^(2x)f(x) = (1/3)e^(3x) + C

where C is a constant of integration.

Finally, we can solve for f(x) by dividing both sides by e^(2x):
f(x) = (1/3)e^x + Ce^(-2x)

where C is determined by initial or boundary conditions.

 

Q) solve the above differential equation with initial condition f(0)=1

 

 

The initial condition f(0) = 1 tells us that when x = 0, the function f(x) has a value of 1. We can use this information to find the constant of integration C.

Substituting x = 0 into the general solution, we get:
f(0) = (1/3)e^0 + Ce^(-2*0) = (1/3) + C = 1

So, C = (1 - 1/3) = 2/3

Therefore, the solution to the differential equation f'(x) - 2f(x) = e^x with the initial condition f(0) = 1 is:
f(x) = (1/3)e^x + (2/3)e^(-2x)

Posted by 살레시오
,