여기에서는 Led 라는 클래스를 작성하는 예를 들어보도록 하겠다. 아두이노의 예제이지만 아두이노가 C++로 개발하므로 일반적인 클래스의 예제도 된다.


 아두이노의 디지털핀에는 LED를 연결할 수 있으므로 Led 클래스는 연결된 핀 번호를 갖는 멤버가 있어야 한다. 따라서 다음과 같이 작성할 수 있다.

class Led {
   public: byte pin;
};

그리고 인스턴스를 생성할 때 이 핀번호를 받도록 하려면 다음과 같이 생성자를 작성하면 될 것이다.

class Led {
   public:
       byte pin;
       Led(int);
};
Led::Led(int dp) {
       pin = dp;
       pinMode(pin, OUTPUT);
}

이렇게 작성하면 멤버 변수 pin을 외부에서 접근할 수 있다. 예를 들면

Led ledRed(12);
ledRed.pin = 11;

와 같이 인스턴스를 생성한 이후에 핀번호를 바꾸는 것이 가능하다.


 그렇지만 핀번호는 한 번 초기화되면 바꿀 필요가 없으므로 궂이 외부에 노출시킬 필요가 없다. 따라서 다음과 같이 private 멤버로 지정하는 것이 바람직하다. 또한 내부 멤버임을 표시하기 위하여 첫 문자를 underscore(_)로 했다.



class Led {
   public:
       Led(int);
   private:
       byte _pin;
};
Led::Led(int pin) {
   _pin = pin;
   pinMode(_pin, OUTPUT);
}

또는 기본 지정자가 private 이므로 아래와 같이 작성해도 된다.



class Led {
   byte _pin;

   public:
       Led(int);
};

Led::Led(int pin) {
   _pin = pin;
   pinMode(_pin, OUTPUT);
}

 

하지만 명시적으로 private 키워드를 이용하여 지정해 주는 것이 가독성 측면에서 더 바람직하다. 그리고 클래스 선언에서는 public 멤버들이 먼저 오는 것이 좋다. 왜냐면 작성자가 아닌 다른 사람이  (보통 라이브러리에 포함되어 배포되는) 이 클래스를 사용하고자 한다면 public 멤버들만 알면 되지 private 멤버들은 궂이 볼 필요가 없기 때문이다.

 이렇게 핀 번호를 private로 지정해 놓으면 외부에서 접근할 수 없으므로 LED를 켜고 끄는 것도 외부에서 수행할 수 없다. 하지만 멤버 함수는 내부 변수를 접근할 수 있으므로 LED를 켜고 끄는 public 멤버 함수를 다음과 같이 지정할 수 있다. 전체적인 클래스의 모양은 다음과 같을 것이다.

class Led {
   public:
       Led(int);
       void turnOn();
       void turnOff();
   private:
       byte _pin;
};
Led::Led(int pin) {
   _pin = pin;
   pinMode(_pin, OUTPUT);
}
Led::void turnOn() {
   digitalWrite(_pin, HIGH); // 멤버 함수는 _pin을 사용할 수 있다.
}
Led::void turnOff() {
   digitalWrite(_pin, LOW); // 멤버 함수는 _pin을 사용할 수 있다.
}

 멤버 변수나 함수는 관례적으로 그 이름이 소문자로 시작하며 클래스는 대문자로 시작한다는 점을 알아두자. 이것은 식별자(이름)만 보고 타잎을 유추하기 쉽게 하기 위한 C++ 프로그램의 관례이다.

 만약 12번 핀에 빨간색 LED가 연결되어 있다면 다음과 같이 Led 객체를 사용할 수 있다.

Led ledRed(12);
....
ledRed.turnOn();
delay(500);
ledRed.turnOff();
delay(500);
....


이와 같이 인스턴스의 이름도 그것으로 실제 의미를 유추할 수 있도록 작성하는 것이 프로그램의 가독성 측면에서 유리하다.


 만약 11번핀에 노란색, 10번핀에 파란색 LED가 추가로 달려있다면 아래와 같이 작성할 수 있을 것이다.


Led ledRed(12), ledYellow(11), ledBlue(10);

이후에 만약 파란색 LED를 켜고 싶다면 다음과 같이 멤버함수를 호출한다.


ledBlue.turnOn();

 이런 식으로 클래스를 이용하여 LED를 객체화 시키면 직관적으로 프로그램을 작성할 수 있다는 장점이 있다.

C++ 강좌 전체 목록 >>>


c{c++},n{c0023}

Posted by 살레시오
,

 일반 변수와 마찬가지로 어떤 함수 내에서 생성된 인스턴스는 지역 인스턴스, 함수 바깥에 선언된 인스턴스는 전역 인스턴스이다. 전역 인스턴스는 프로그램이 실행될 때 생성되고 프로그램이 종료될 때 소멸된다. 그리고 지역 인스턴스는 함수가 실행될 때 생성되고 함수가 종료될 때 소멸된다.


 다음 예를 가지고 생성자와 소멸자의 실행 순서를 설명하도록 하겠다. 여기에서 rect1 은 함수 바깥에서 생성된 전역 인스턴스이고 rect2, rect3 는 함수 func()의 지역 인스턴스이다.

class Rect {
   .....
};
Rect rect1;
void func() {
   Rect rect2;
   Rect rect3;
   .....
}
int main() {
   .....
   func();
   .....
}

위 예제와 같이 main()함수에서 func() 함수가 호출될 때 rect2, rect3 의 순으로 인스턴스가 생성되며 생성자도 같은 순서로 호출된다. 하지만 func() 함수가 종료될 때는 그 역순으로 소멸되며 소멸자도 역순으로 호출된다.


 전체적인 생성자와 소멸자의 호출순서를 좀 더 자세히 기술하면 다음과 같다.



프로그램 시작

   rect1 객체 생성 (생성자 호출)

   main()함수 실행
       .....

       func()함수 실행
       rect2 객체 생성 (생성자 호출)
       rect3 객체 생성 (생성자 호출)
       .....
       rect3 객체 소멸 (소멸자 호출)
       rect2 객체 소멸 (소멸자 호출)
       func()함수 종료

       .....
   main함수 종료

   rect1 객체 소멸 (소멸자 호출)

프로그램 종료

전역 인스턴스는 전역 변수와 마찬가지로 그 밑에 위치한 모든 함수에서 접근할 수 있는 반변 지역 인스턴스는 포함된 함수 내부에서만 접근할 수 있고 함수의 실행이 끝나면 소멸된다.


C++ 강좌 전체 목록 >>>


c{c++},n{c0022}

Posted by 살레시오
,

 소멸자(destructor)는 생성자와는 반대로 인스턴스가 소멸될 때 반드시 호출되는 멤버 함수이다. 소멸자는 객체가 삭제되는 시점에서 필요한 마무리 작업을 처리하기 위해서 있는 것이다. 예를 들어서 동적으로 할당받은 메모리를 반환하거나 열어 놓은 파일을 닫거나 시리얼 등의 통신 연결을 끊거나 하는 마무리 작업을 수행해야 하는 경우 소멸자를 구현해야 한다.


 소멸자의 이름은 클래스이름 앞에 틸다(~)를 붙인다. 예를 들어서 Rect 클래스의 소멸자 이름은 ~Rect() 이다.


class Rect { // 클래스 선언
   public:
       Rect(); // 생성자
       ~Rect(); // 소멸자
   .....
};

Rect::~Rect() { // 소멸자 구현
   .....
}

 생성자와 마찬가지로 소멸자도 반환값이 없으며 함수 내부에서 어떤 값을 반환해서도 안된다. 또한 생성자를 오버로딩할 수 있으나 (즉,  입력 인자가 다른 생성자가 여러 개 있을 수 있다) 소멸자는 입력 인수가 없는 기본형 하나밖에 없다.


 생성자와 마찬가지로 사용자가 소멸자를 선언하지 않은 경우에는 컴파일러가 자동으로 기본 소멸자(default destructor)를 생성하여 인스턴스 소멸시에 자동으로 호출되도록 한다. 이 기본 소멸자는 아무 일도 하지 않고 단순히 리턴하도록 만들어진다.


C++ 강좌 전체 목록 >>>


c{c++},n{c0021}

Posted by 살레시오
,