몇 년 전에 만든 아두이노 강의 교재를 공유하고자 한다.

아래 표지를 클릭하면 다운로드 가능하다.

교재 표지

Posted by 살레시오
,

The differential equation is a second-order linear homogeneous differential equation with constant coefficients. It can be solved using the method of characteristic equations.

The characteristic equation is found by setting the characteristic polynomial equal to zero:
r^2 + 3r + 2 = 0

Solving this equation, we get: r = -1, -2

These are the roots of the characteristic equation, which are real and distinct.

Therefore, the general solution to the differential equation is:
f(x) = c1e^(-x) + c2e^(-2x) + Asin(x) + Bcos(x)

Where c1, c2, A, B are arbitrary constants determined by initial or boundary conditions.

We can use the initial conditions f(0) = 1 and f'(0) = 2, to find the values of c1, c2, A, B.

f(0) = 1 = c1e^(0) + c2e^(0) + A = c1 + c2 + A

f'(0) = 2 = -c1e^(0) - 2c2e^(0) + B = -c1 - 2c2 + B

Therefore, c1 = 1 - A - c2 and c2 = (2 - B)/2

Substituting the value of c1 and c2 in the general solution, we get:
f(x) = (e^(-x)(1 - A - c2) + e^(-2x)(2 - B)/2) + Asin(x) + Bcos(x)

This is the solution to the differential equation f''(x) + 3f'(x) + 2f(x) = sin(x) with the initial conditions f(0) = 1, f'(0) = 2.

 

거의 완벽한 해법을 제시한다. 충격이다.

'chatGPT' 카테고리의 다른 글

Q) solve differential equation of f'(x)-2f(x)=exp(x)  (0) 2023.01.22
Q) what is the determinant of a 3x3 matrix  (0) 2023.01.22
Q) derivate xsec^2(x) w.r.t. x  (0) 2023.01.22
Q) prove Euler's formula  (0) 2023.01.22
Q) 123457은 솟수인가?  (0) 2023.01.22
Posted by 살레시오
,

The differential equation can be solved using an integrating factor. An integrating factor for this differential equation is e^(int(2)dx)=e^(2x).

Multiplying both sides of the differential equation by e^(2x) gives:
e^(2x)f'(x) - 2e^(2x)f(x) = e^(3x)

Now, we can use the product rule for derivatives, which states that:
(e^(2x)f(x))' = e^(2x)f'(x) + 2e^(2x)f(x)

Therefore, we can write:
(e^(2x)f(x))' = e^(3x)

Integrating both sides with respect to x gives:
e^(2x)f(x) = (1/3)e^(3x) + C

where C is a constant of integration.

Finally, we can solve for f(x) by dividing both sides by e^(2x):
f(x) = (1/3)e^x + Ce^(-2x)

where C is determined by initial or boundary conditions.

 

Q) solve the above differential equation with initial condition f(0)=1

 

 

The initial condition f(0) = 1 tells us that when x = 0, the function f(x) has a value of 1. We can use this information to find the constant of integration C.

Substituting x = 0 into the general solution, we get:
f(0) = (1/3)e^0 + Ce^(-2*0) = (1/3) + C = 1

So, C = (1 - 1/3) = 2/3

Therefore, the solution to the differential equation f'(x) - 2f(x) = e^x with the initial condition f(0) = 1 is:
f(x) = (1/3)e^x + (2/3)e^(-2x)

Posted by 살레시오
,