The determinant of a 3x3 matrix A, denoted as det(A) or |A|, is a scalar value that can be calculated from the elements of the matrix.

The formula for the determinant of a 3x3 matrix is:

| a b c |
| d e f | = a*(ei - fh) - b*(di - fg) + c*(dh - eg)
| g h i |

where a, b, c, d, e, f, g, h, i are the elements of the matrix A.

It can also be computed using the rule of Sarrus which is a mnemonic device to remember the formula for 3x3 determinant:

| a b c |
| d e f | = aei + bfg + cdh - afh - bdi - ceg
| g h i |

The determinant of a matrix has many uses in linear algebra and it is used to determine the invertibility of a matrix, it is also used to calculate the area or volume of a parallelepiped spanned by the columns or rows of the matrix.




Posted by 살레시오
,

To find the derivative of xsec^2(x) with respect to x, we can use the chain rule. First, we need to express xsec^2(x) in terms of its reciprocal function, csc(x).

xsec^2(x) = 1/(csc(x))^2

Using the reciprocal function identities, csc(x) = 1/sin(x) and sec(x) = 1/cos(x), we can then express xsec^2(x) as:

xsec^2(x) = (cos(x))^2/(sin(x))^2

Now we can take the derivative of xsec^2(x) using the chain rule:

d/dx(xsec^2(x)) = 2cos(x)(-sin(x))(cos(x))/(sin(x))^2 + (cos(x))^2(-1/sin(x))*(cos(x))

Simplifying the equation, we get:

d/dx(xsec^2(x)) = tan(x)*sec^2(x)

So the derivative of xsec^2(x) with respect to x is tan(x)*sec^2(x).

Posted by 살레시오
,

Q) prove Euler's formula

chatGPT 2023. 1. 22. 14:56

Euler's formula, also known as Euler's identity, states that e^(itheta) = cos(theta) + isin(theta) for all real numbers theta.

To prove this formula, we can start with the Taylor series expansions of e^(ix) and cos(x) + i*sin(x).

e^(ix) = 1 + ix + (ix^2)/2! + (ix^3)/3! + ...

cos(x) + i*sin(x) = 1 - (x^2)/2! + (ix^2)/2! - (x^4)/4! + (ix^4)/4! - ...

Matching the real and imaginary parts of these two equations, we see that:

1 = 1
ix = ix
(ix^2)/2! = -(x^2)/2!
(ix^3)/3! = (x^3)/3!
...

Since the coefficients of each term match on both sides of the equation, we can conclude that e^(ix) = cos(x) + i*sin(x) for all real numbers x, which is exactly the Euler's formula.

Posted by 살레시오
,